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Global warming is now recognized as the domi-
nant threat to biodiversity because even pro-
tected populations and habitats are susceptible.
Nonetheless, current criteria for evaluating
species’ relative endangerment remain purely
ecological, and the accepted conservation
strategies of habitat preservation and population
management assume that species can mount
ecological responses if afforded protection. The
insidious threat from climate change is that it
will attenuate or preclude ecological responses
by species that are physiologically constrained;
yet, quantitative, objective criteria for assessing
relative susceptibility of diverse taxa to warming-
induced stress are wanting. We explored the
utility of using interspecies physiological vari-
ation for this purpose by relating species’ phys-
iological phenotypes to landscape patterns of
ecological and genetic exchange. Using a sala-
mander model system in which ecological,
genetic and physiological diversity are well
characterized, we found strong quantitative
relationships of basal metabolic rates (BMRs) to
both macroecological and phylogeographic pat-
terns, with decreasing BMR leading to dispersal
limitation (small contemporary ranges with
marked phylogeographic structure). Measures
of intrinsic physiological tolerance, which vary
systematically with macroecological and phylo-
geographic patterns, afford objective criteria for
assessing endangerment across a wide range
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1. INTRODUCTION
Anthropogenic warming is now the dominant threat to
global biodiversity, but objective, operational criteria
for assessing species’ relative endangerment from cli-
mate change remain wanting (IUCN 2001; Willott &
Thomas 2001; Thomas et al. 2004). Present criteria are
exclusively ecological (e.g. population size, range size),
underlain by the implicit assumption that protected
species can mount biological responses to climate
change if afforded protection. This conservation
scheme ignores species differences in physiological
optima and tolerances that determine their ecological
potential during climate change (Bernardo & Spotila
2006). There is a pressing need in conservation biology
and climate change research for cross-species, quan-
titative, objective criteria for assessing the susceptibility
of species to climate change-induced extinction.

One attempt to address this shortcoming is phe-
nomenological, using climatic descriptions of contem-
porary ranges coupled with expected temperatures to
predict future ranges. These bioclimatic models are
best case scenarios because, while they reflect existing
interspecific differences in projected ranges under
global warming, they also implicitly assume that all
species have similar potential to access and exploit
predicted climate space.

Here we explore an alternative, mechanistic
approach that uses intrinsic properties of species to
predict their responses to climate change. The first step
of this approach (examined here) is to assess whether
physiological differences among species are quan-
titatively related to population ecological and genetic
dynamics. If so, such functional relationships could be
used to make explicit quantitative predictions about not
only potential ranges, but also species’ ecological and
population genetic fates as warming ensues. Ecologists
have long appreciated that physiological diversity must
relate to interspecific differences in habitat occupancy
and use, but there are surprisingly few quantitative data
demonstrating such a relationship. As Gaston (2003)
observed: ‘impressions as to such differences abound,
but seem little more developed than that.’ Compared
with widely studied extrinsic regulators of dispersal and
establishment (e.g. interspecific interactions, climate),
the impact of interspecific physiological differences on
macroecological patterns is underappreciated (Brown
1995; Kirkpatrick & Barton 1997; Clarke 2003).
Similarly, while ecological variables are being incorpor-
ated into comparative phylogeographic analyses, the
effects of interspecific physiological variation are
not studied. Thus, demonstrations of quantitative
connections between physiology and macroecological
patterns or, especially, phylogeographic patterns, are
generally lacking.

We studied physiological variation among
Desmognathus salamanders endemic to the Appala-
chian Mountains of eastern North America. This
This journal is q 2007 The Royal Society
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Figure 1. Desmognathus phylogeny (nj cytB) illustrating interspecific variation in phylogeographic structure among study
species. Grey boxes encompass population samples of each species. Branch lengths are proportional to change (see scale in
image). Black circles within rectangles depict the least-squares means (LSM) BMR (table 1; see §2) of each species, scaled
to the maximum rate (100%ZDesmognathus fuscus).
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radiation comprises 27 nominal and undescribed
species ( J. Bernardo, S. G. Tilley, M. M. Yoke &
K. A. Crandall 2007) that exhibit sevenfold variation
in adult size, which is closely associated with patterns
of microhabitat use (Tilley & Bernardo 1993) but,
surprisingly, not range size. Both large and small
species are narrowly and widely distributed,
suggesting that factors other than body size affect
range occupation.

We previously reported (Bernardo & Spotila 2006)
that two montane species with restricted ranges
(Desmognathus ocoee and Desmognathus carolinensis)
exhibit marked physiological depression at moderate
environmental temperatures, which was inversely
correlated with elevation. We hypothesized that these
forms are physiologically specialized to cool montane
habitats, apparently at the expense of lowland dis-
persal, a physiological trade-off analogous to the one
first articulated by Janzen (1967) for tropical organ-
isms. This paper tests those ideas.
2. MATERIAL AND METHODS
(a) Species’ characteristics and metabolic rate data

We studied six species for which comparable basal metabolic rate
(BMR) data (VO2 max from trials at 5, 10, 15 and 208C) were
available (figure 1; for detailed descriptions of species, ranges and
habits, see electronic supplementary material, appendix 1). For-
tuitously, these species vary considerably in body size, ecological
niche and range size, and both widely and narrowly distributed
groups contain large- and small-bodied species and highly aquatic
and highly terrestrial forms. Importantly, these species also capture
much of the phylogenetic diversity in this genus (figure 1). Units
were standardized (ml hK1) and data were ln-transformed to meet
linearity assumptions of GLM.

(b) Quantitative estimates of range size

We computed the range of Cowee D. ocoee as the area of the Cowee
Mountains above 900 m, its lower elevational limit (Bernardo &
Spotila 2006). Range sizes of other species were calculated from
range maps (Petranka 1998) that were scanned, pixelated, scaled to
square kilometre and calibrated by scans of known area.

(c) Phylogeographic structure parameter

For each pair of conspecific populations, we computed the ratio of
sequence divergence (%SD) estimated from a 540 bp region of
Biol. Lett. (2007)
cytochrome b, to great circle distance (km) between samples. These
estimates (%SD/km) were then averaged for each species.

(d) Statistical analyses: unbiased estimates of

species-specific BMR

We used analysis of covariance (ANCOVA) carrying body size of
subjects (mass, g) as a covariate (Packard & Boardman 1999) and
species and temperature as factors to evaluate whether there were
significant interspecific differences in BMR to justify it as a
predictor variable (least-squares means (LSMs) of BMR, i.e.
unbiased species-specific estimates, independent of allometric
effects and experimental temperatures) for the hypothesis testing
analyses of range size and phylogeographic structure.

(e) Statistical analyses: hypothesis tests

To test for a relationship between BMR and range size, we
computed ANCOVAs using LSM BMR (§2d ) and species’ charac-
teristic body size (maximum or average adult size (mm), snout-
to-vent length in separate analyses) as factors. To test for a
relationship between BMR and phylogeographic structure, we
regressed mean %SD/km against LSM BMR using nonlinear
regression (figure 2b).
3. RESULTS
We found significant interspecific differences in BMR
(figure 1) after accounting for the effects of subject size
and trial temperature (ANCOVA: F10,44Z167.879,
p!0.001; R2Z0.9745; table 1), thus justifying inter-
species physiological differences as a predictor variable
in the analyses of landscape-level patterns.

Ranges of the study species varied by four orders
of magnitude, from 1715 km2 in Cowee Mountains
D. ocoee to 6 857 949 km2 in Desmognathus fuscus. Yet,
species-specific BMR closely determined range size;
this effect was distinctly not attributable to species’
characteristic body sizes (adult size, ANCOVA,
F2,5Z43.0090, pZ0.0029; R2Z0.9663; table 2; elec-
tronic supplementary material). Species with the
highest BMRs had the largest ranges, whereas
species with low BMRs had far smaller ranges
restricted to the montane Southern Appalachian
Highlands. This pattern was not explained by body
size: both large- and small-bodied species had broad
and restricted ranges (figure 2a), and neither body
size estimate explained a significant proportion of

http://rsbl.royalsocietypublishing.org/


Table 2. Analysis of covariance of ln-transformed range sizes
of six species of Desmognathus salamanders using maximum
adult body size as an estimate of species’ characteristic body
size. (See text for details and electronic supplementary
material for comparable analysis using average adult size.
Model, F2,5Z38.374, p!0.0062; SS, sum of squares.)

source d.f. type III SS F-ratio pOF

metabolic rate 1 36.3543 81.4900 !0.0029
maximum adult

body size
1 2.4853 5.5709 !0.0994 (n.s.)

error 3 1.3384
corrected total 5 39.7127
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Figure 2. (a) Relationship of range size (ln (km2)) to BMR
(ln (VO2, ml hK1)) in six species of Desmognathus. Species’
characteristic body size is indicated by scaled depictions of
adult males. Symbols depict LSM BMRGs.e., which
account for the effects of body size and temperature (§2d;
table 1). Hypothesis tests are based on ANCOVA and are
reported in the text; the linear regression (for illustrative
purposes) and 95% CI use only mean species’ values.
(b) Relationship of phylogeographic structure (%SD/km) to
basal metabolic rate (ln (VO2, ml hK1)). Scaled depictions
of adult males are as shown in figure 1. Symbols depict LSM
BMRGs.e., which account for the effects of body size and
temperature (§2d ). Error bars for phylogeographic diver-
gence are Gs.e. of %SD/km, but these are too small to be
seen for most points. The nonlinear regression (see text) and
95% CI use only mean species’ values of each parameter.
Star, Cowee D. ocoee; upside down triangle, D. carolinensis;
circle, D. quadramaculatus; diamond, D. monticola; square,
D. ochrophaeus; triangle, D. fuscus.

Table 1. Analysis of covariance of ln-transformed basal
metabolic rate (ln (VO2)) of six species of Desmognathus
salamanders as a function of body mass (covariate), tempera-
ture and species. (Model, F10,54Z274.051, p!0.0001; SS,
sum of squares. Least-squares means from this analysis are
used as a predictor variable in the analysis of range size and
are illustrated in figure 1.)

source of variation d.f. type III SS F-ratio pOF

ln (mass) 1 40.0683 245.4518 !0.0001
temperature 4 12.7417 8.3199 !0.0001
species 5 5.2574 6.4412 !0.0001
error 44 7.1827
corrected total 54 281.2336
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interspecific variance in range size (table 2; electronic

supplementary material).

We reasoned that if physiological properties influ-

enced vagility, we could also detect dispersal limitation

using genetic data. Indeed, there was a striking, non-

linear association between BMR and genetic exchange

(figure 2b) and BMR explained a high proportion of

interspecific variance in genetic structure (%SD/kmZ
(8.39C(45.77/LSM VO2)C(62.29/(LSM VO2)2)),

F3,3Z23.2308, p!0.025; adjusted R2Z0.9176).
Biol. Lett. (2007)
Eurythermal generalists (Desmognathus ochrophaeus,
D. fuscus and Desmognathus monticola) exhibited little to
no phylogeographic structure, whereas montane
specialists showed moderate to extreme levels of genetic
differentiation over very small spatial scales (figure 2b).
4. DISCUSSION
We hypothesize that the strong quantitative associations
between species’ intrinsic physiological characteristics
and their landscape-scale ecological and genetic
structure are driven by trade-offs between specialist
(stenothermal) and generalist (eurythermal) physiologi-
cal phenotypes (Huey & Kingsolver 1993; Gilchrist
1995) influencing dispersal. This interpretation accords
with mechanistic data, showing that the two montane
specialists suffer pronounced metabolic depression in
low-elevation populations living near their tolerance
limits (Bernardo & Spotila 2006). Hence, we infer that
metabolic stress arising from low intrinsic BMR of
montane stenotherms impedes their dispersal, leading
to restricted ranges and inhibiting genetic exchange. In
contrast, the high BMR of widespread eurytherms
permits exploitation of a wider range of thermal
environments, conferring higher vagility and facilitating
range expansion, broader range occupancy and sub-
stantial genetic exchange.

Although our data are correlative, we conclude
that intrinsic BMR phenotypes are the mechanistic
driver of the contrasting landscape patterns, because
the capacity to tolerate warmer environments must
have largely preceded their widespread colonization
and occupation (Janzen 1967; Huey & Kingsolver
1993; Gilchrist 1995). This mechanism unites the

http://rsbl.royalsocietypublishing.org/


698 J. Bernardo et al. Comparative physiology and conservation

 rsbl.royalsocietypublishing.orgDownloaded from 
ecological process of dispersal with the population
genetic outcome of gene flow, a long recognized
relationship whose underlying causes remain poorly
understood. The strong quantitative relationship
between BMR and genetic exchange deserves careful
scrutiny among diverse organisms.

Clearly, correlations between low-level mechanism
(BMR) and high-level patterns (figure 2) are trans-
duced through intermediate mechanisms: first,
through individual performance and fitness (Arnold
1983) and, then, through population processes.
Previous work on plethodontid salamanders (Spotila
1972; Feder & Londos 1984) indicates that physiologi-
cal challenges cause performance limitation. Research
exploring these mechanistic linkages is ongoing.

These findings have several distinct implications
for conservation biology, some of which have not
previously been recognized. First, our data highlight
two insidious paths of biodiversity loss via climate
change. Although biologists have suspected that cold-
adapted stenotherms are especially susceptible to
climate change-induced extinction, our data provide a
mechanistic basis for understanding and quan-
titatively predicting this elevated vulnerability. We
conclude that the implicit assumption underlying the
dominant conservation paradigm that threatened
species will respond ecologically given suitable habitat
is overly optimistic.

Less widely recognized is the likelihood of
increased genetic erosion in montane stenotherms.
Range contraction by these species, characterized by
substantial phylogeographic structure, will cause loss
of distinct population segments and reduction in
effective population sizes.

The last distinct implication for conservation is
that the practice of using properties of closely related
species to develop conservation schemes for others,
though seemingly reasonable, is unreliable. Biologists
recognize that closely related species typically vary in
body size, niche and macroecological features such as
range size, but our data show that physiological
attributes of closely related forms may also be highly
divergent. Because thermal physiology is expected to
directly influence species’ responses to climate
change, this finding demands caution in assuming
conserved physiology in the absence of comparative
physiological data.

Prediction of endangerment using various criteria
and approaches remains a major activity in conserva-
tion biology. Given the paucity of quantitative con-
nections between physiology and macroecological
patterns discussed earlier, and the dearth of examples
relating physiology to genetic exchange, it is not
surprising that there has been little attempt to relate
intrinsic physiological features to the more applied
problem of assessing species’ relative endangerment
due to global warming. Our approach, in which
contemporary patterns in ecological and genetic
exchange can be related to interspecific physiological
predictors, validates the use of comparative physio-
logical data as an objective criterion in conservation.
Biol. Lett. (2007)
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